Abstract

Recent studies have examined the role of wear debris-induced bone resorption in the aseptic loosening of orthopedic prostheses. Research has shown that inflammation depends not only on the amount of particulate debris, but also the shape and size of the accumulated wear particles. Our previous studies have demonstrated that variant shapes of ultra-high molecular weight polyethylene (UHMWPE) particles induce diverse cellular and apoptotic responses in a murine inflammation model. Since enhanced osteoclastogenesis is recognized as a hallmark of bone loss in prosthetic loosening, we have now investigated the gene expression of receptor activator of nuclear factor-κB (RANK) and receptor activator of nuclear factor-κB ligand (RANKL) during the inflammatory response to different shapes of UHMWPE particles. Two shapes of UHMWPE particles (globular or elongated) were implanted in established air pouches on BALB/c mice, and pouches harvested 7 days after stimulation with UHMWPE particles. Gene levels of RANK, RANKL, TNF α, IL-1 β, and cathepsin K (CK) were quantified by real time RT-PCR, and TRAP staining of pouch membrane was used to evaluate osteoclastogenesis. We found that (i) elongated particles generated significantly higher RANK and RANKL gene expression than globular particles in pouch tissue; (ii) elongated particles provoked significantly higher IL-1 β and TNF α gene expression; (iii) a positive association was found between tissue inflammation status and the gene level of RANK/RANKL; and (iv) elongated particles stimulated significantly higher CK gene expression in comparison with globular particles. Histology revealed that clusters of TRAP+ cells were located in regions in contact with elongated particles. Overall, these data suggest that the morphology of wear debris may be a critical factor in the pathogenesis of prosthetic loosening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.