Abstract
BackgroundWhole genome duplications (WGDs) have been proposed to have made a significant impact on vertebrate evolution. Two rounds of WGD (1R and 2R) occurred in the common ancestor of Gnathostomata and Cyclostomata, followed by the third-round WGD (3R) in a common ancestor of all modern teleosts. The 3R-derived paralogs are good models for understanding the evolution of genes after WGD, which have the potential to facilitate phenotypic diversification. However, the recent studies of 3R-derived paralogs tend to be based on in silico analyses. Here we analyzed the paralogs encoding teleost olfactory marker protein (OMP), which was shown to be specifically expressed in mature olfactory sensory neurons and is expected to be involved in olfactory transduction.ResultsOur genome database search identified two OMPs (OMP1 and OMP2) in teleosts, whereas only one was present in other vertebrates. Phylogenetic and synteny analyses suggested that OMP1 and 2 were derived from 3R. Both OMPs showed distinct expression patterns in zebrafish; OMP1 was expressed in the deep layer of the olfactory epithelium (OE), which is consistent with previous studies of mice and zebrafish, whereas OMP2 was sporadically expressed in the superficial layer. Interestingly, OMP2 was expressed in a very restricted region of the retina as well as in the OE. In addition, the analysis of transcriptome data of spotted gar, a non-teleost fish, revealed that single OMP gene was expressed in the eyes.ConclusionWe found distinct expression patterns of zebrafish OMP1 and 2 at the tissue and cellular level. These differences in expression patterns may be explained by subfunctionalization as the model of molecular evolution. Namely, single OMP gene was speculated to be originally expressed in the OE and the eyes in the common ancestor of all Osteichthyes (bony fish including tetrapods). Then, two OMP gene paralogs derived from 3R-WGD reduced and specialized the expression patterns. This study provides a good example for analyzing a functional subdivision of the teleost OE and eyes as revealed by 3R-derived paralogs of OMPs.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0530-y) contains supplementary material, which is available to authorized users.
Highlights
Whole genome duplications (WGDs) have been proposed to have made a significant impact on vertebrate evolution
Two olfactory marker protein (OMP) derived from the third-round whole genome duplication in teleosts To identify OMPs in teleost genomes, we searched genome databases of zebrafish, stickleback (Gasterosteus aculeatus), fugu (Takifugu rubripes), medaka, platyfish (Xiphophorus maculatus), and tilapia (Oreochromis niloticus) by using known OMP sequences as queries, and obtained two significant hits from each species
Ensembl gene prediction suggested that OMP2 consists of two exons, OMP is known as an intronless gene [24, 36]
Summary
Whole genome duplications (WGDs) have been proposed to have made a significant impact on vertebrate evolution. The thirdround WGD (3R), in contrast, occurred in the common ancestor of teleosts (ray-finned fish excluding basal groups belong to polypteriforms, acipenseriforms, lepisosteids, and Amia) [8,9,10,11,12]. This is represented by the copy number of genes, two in teleosts, one in mammals [12, 13]. There are seven Hox clusters in teleost genomes, whereas four clusters are present in mammalian, coelacanth, and shark genomes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.