Abstract

Cortical neurons, especially GABAergic interneurons, are composed of very diverse subtypes. It remains to be investigated whether each subtype shows a unique firing pattern during the synchronized activities generated by the intracortical circuit. By lowering extracellular Mg(2+) in vitro, we induced NMDA receptor-dependent spontaneous activities in the rat frontal cortex at 30 degrees C. After a series of spontaneous depolarization shifts, the long bursts occurred. The long bursts were composed of initial discharges and fast run-like potentials (FRLP) (4-10 Hz). Large inhibitory currents were induced at the initial discharge. After the strong inhibition decreased, the FRLP started. However, the periodical inhibition survived during the FRLP. At each phase of the synchronized activities, cortical neuron types exhibited distinct firing patterns. Pyramidal cells increased firing frequency periodically up to approximately 25-55 Hz during the FRLP cycles. Fast-spiking (FS) cells fired at the highest frequency in the initial discharge, up to 400 Hz, and could continue firing faster than 200 Hz for several seconds. In the FRLP, the firing frequency of FS cells rhythmically increased up to 150 Hz. In contrast, large cholecystokinin basket cells fired, very similarly to pyramidal cells, at each phase. Somatostatin and vasoactive intestinal polypeptide cells fired faster than pyramidal cells at the initial discharge, but showed the similar firings to pyramidal cells during the FRLP. The firing patterns of cortical neurons are not only determined by the strength and temporal pattern of synchronized inputs but also strongly dependent on the neuronal subtype with specific physiological, chemical, and morphological characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.