Abstract

Two-dimensional ferrovalley materials should simultaneously possess three characteristics, that is, a Curie temperature beyond atmospheric temperature, perpendicular magnetic anisotropy, and large valley polarization for potential commercial applications. In this report, we predict two ferrovalley Janus RuClX (X = F, Br) monolayers by first-principles calculations and Monte Carlo simulations. The RuClF monolayer exhibited a valley-splitting energy as large as 194 meV, perpendicular magnetic anisotropy energy of 187 μeV per f.u., and Curie temperature of 320 K. Thus, spontaneous valley polarization at room temperature will be present in the RuClF monolayer, which is nonvolatile for spintronic and valleytronic devices. Although the valley-splitting energy of the RuClBr monolayer was as high as 226 meV with magnetic anisotropy energy of 1.852 meV per f.u., the magnetic anisotropy of the RuClBr monolayer was in-plane, and its Curie temperature was only 179 K. The orbital-resolved magnetic anisotropy energy revealed that the interaction between the occupied spin-up states of dyz and the unoccupied spin-down states of dz2 dominated the out-of-plane magnetic anisotropy in the RuClF monolayer, but the in-plane magnetic anisotropy of the RuClBr monolayer was mostly contributed by the coupling of the dxy and dx2-y2 orbitals. Interestingly, the valley polarizations in the Janus RuClF and RuClBr monolayers appeared in their valence band and conduction band, respectively. Thus, two anomalous valley Hall devices are proposed using the present Janus RuClF and RuClBr monolayers with hole and electron doping, respectively. This study provides interesting and alternative candidate materials for the development of valleytronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.