Abstract

We used angle-resolved photoemission spectroscopy applied to deeply underdoped cuprate superconductors Bi2Sr2Ca(1-x)YxCu2O8 (Bi2212) to reveal the presence of two distinct energy gaps exhibiting different doping dependence. One gap, associated with the antinodal region where no coherent peak is observed, increased with underdoping, a behavior known for more than a decade and considered as the general gap behavior in the underdoped regime. The other gap, associated with the near-nodal regime where a coherent peak in the spectrum can be observed, did not increase with less doping, a behavior not previously observed in the single particle spectra. We propose a two-gap scenario in momentum space that is consistent with other experiments and may contain important information on the mechanism of high-transition temperature superconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.