Abstract

The alpha subunit of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor has several isoforms that result from alternative splicing events. Two forms, alpha-1 and alpha-2, have intracytoplasmic sequences that are identical within a membrane-proximal domain but differ completely distally. Variant and mutated GM-CSF receptor alpha subunits, along with the beta subunit (beta(c) protein) were expressed in M1 murine leukemia cells. and the ability of the receptors to signal for differentiation events and to activate Jak/Stat signaling pathways was examined. All cell lines expressing both alpha and beta(c) proteins exhibited high-affinity binding of radiolabeled human GM-CSF. Receptor alpha subunits with intact membrane-proximal intracellular domains could induce expression of the macrophage antigen F4/80 and down-regulate the expression of CD11b. Addition of recombinant human GM-CSF to cells expressing alpha-1 subunits induced the expression of CD86 and tyrosine phosphorylation of Jak-2 and its putative substrates SHPTP-2, Stat-5, and the GM-CSF receptor beta(c) subunit. Cells containing alpha subunits that lacked a distal domain (term-3) or had the alternatively spliced alpha-2 distal domain showed markedly decreased ability to support tyrosine phosphorylation of Jak-2 and its substrates or to up-regulate CD86. Ligand binding induced stable association of the alpha-1 subunit and beta(c) protein. In contrast, the alpha-2 subunit did not stably associate with the beta(c) subunit. These data identify potential molecular mechanisms for differential signaling of the alpha-1 and alpha-2 proteins. The association of unique signaling events with the 2 active GM-CSF alpha subunit isoforms offers a model for variable response phenotypes to the same ligand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.