Abstract

LetSbe a set ofnpoints in${\mathbb R}^{2}$contained in an algebraic curveCof degreed. We prove that the number of distinct distances determined bySis at leastcdn4/3, unlessCcontains a line or a circle.We also prove the lower boundcd′ min{m2/3n2/3,m2,n2} for the number of distinct distances betweenmpoints on one irreducible plane algebraic curve andnpoints on another, unless the two curves are parallel lines, orthogonal lines, or concentric circles. This generalizes a result on distances between lines of Sharir, Sheffer and Solymosi in [19].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.