Abstract
We study the minimum number of distinct distances between point sets on two curves in R3. Assume that one curve contains m points and the other n points. Our main results:(a) When the curves are conic sections, we characterize all cases where the number of distances is O(m+n). This includes new constructions for points on two parabolas, two ellipses, and one ellipse and one hyperbola. In all other cases, the number of distances is Ω(min{m2/3n2/3,m2,n2}).(b) When the curves are not necessarily algebraic but smooth and contained in perpendicular planes, we characterize all cases where the number of distances is O(m+n). This includes a surprising new construction of non-algebraic curves that involve logarithms. In all other cases, the number of distances is Ω(min{m2/3n2/3,m2,n2}).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.