Abstract

Norovirus capsids are icosahedral particles composed of 90 dimers of the major capsid protein VP1. The C-terminus of the VP1 proteins forms a protruding (P)-domain, mediating receptor attachment, and providing a target for neutralizing antibodies. NMR and native mass spectrometry directly detect P-domain monomers in solution for murine (MNV) but not for human norovirus (HuNoV). We report that the binding of glycochenodeoxycholic acid (GCDCA) stabilizes MNV-1 P-domain dimers (P-dimers) and induces long-range NMR chemical shift perturbations (CSPs) within loops involved in antibody and receptor binding, likely reflecting corresponding conformational changes. Global line shape analysis of monomer and dimer cross-peaks in concentration-dependent methyl TROSY NMR spectra yields a dissociation rate constant koff of about 1 s−1 for MNV-1 P-dimers. For structurally closely related HuNoV GII.4 Saga P-dimers a value of about 10−6 s−1 is obtained from ion-exchange chromatography, suggesting essential differences in the role of GCDCA as a cofactor for MNV and HuNoV infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call