Abstract
Gamma-tubulin is an indispensable component of the animal centrosome and is required for proper microtubule organization. Within the cell, gamma-tubulin exists in a multiprotein complex containing between two (some yeasts) and six or more (metazoa) additional highly conserved proteins named gamma ring proteins (Grips) or gamma complex proteins (GCPs). gamma-Tubulin containing complexes isolated from Xenopus eggs or Drosophila embryos appear ring-shaped and have therefore been named the gamma-tubulin ring complex (gammaTuRC). Curiously, many organisms (including humans) have two distinct gamma-tubulin genes. In Drosophila, where the two gamma-tubulin isotypes have been studied most extensively, the gamma-tubulin genes are developmentally regulated: the "maternal" gamma-tubulin isotype (named gammaTub37CD according to its location on the genetic map) is expressed in the ovary and is deposited in the egg, where it is thought to orchestrate the meiotic and early embryonic cleavages. The second gamma-tubulin isotype (gammaTub23C) is ubiquitously expressed and persists in most of the cells of the adult fly. In those rare cases where both gamma-tubulins coexist in the same cell, they show distinct subcellular distributions and cell-cycle-dependent changes: gammaTub37CD mainly localizes to the centrosome, where its levels vary only slightly with the cell cycle. In contrast, the level of gammaTub23C at the centrosome increases at the beginning of mitosis, and gammaTub23C also associates with spindle pole microtubules. Here, we show that gammaTub23C forms discrete complexes that closely resemble the complexes formed by gammaTub37CD. Surprisingly, however, gammaTub23C associates with a distinct, longer splice variant of Dgrip84. This may reflect a role for Dgrip84 in regulating the activity and/or the location of the gamma-tubulin complexes formed with gammaTub37CD and gammaTub23C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.