Abstract

BackgroundDevelopment is largely driven by transitions between transcriptional programs. The initiation of transcription at appropriate sites in the genome is a key component of this and yet few rules governing selection are known. Here, we used cap analysis of gene expression (CAGE) to generate bp-resolution maps of transcription start sites (TSSs) across the genome of Oikopleura dioica, a member of the closest living relatives to vertebrates.ResultsOur TSS maps revealed promoter features in common with vertebrates, as well as striking differences, and uncovered key roles for core promoter elements in the regulation of development. During spermatogenesis there is a genome-wide shift in mode of transcription initiation characterized by a novel core promoter element. This element was associated with > 70% of male-specific transcription, including the use of cryptic internal promoters within operons. In many cases this led to the exclusion of trans-splice sites, revealing a novel mechanism for regulating which mRNAs receive the spliced leader. Binding of the cell cycle regulator, E2F1, is enriched at the TSS of maternal genes in endocycling nurse nuclei. In addition, maternal promoters lack the TATA-like element found in zebrafish and have broad, rather than sharp, architectures with ordered nucleosomes. Promoters of ribosomal protein genes lack the highly conserved TCT initiator. We also report an association between DNA methylation on transcribed gene bodies and the TATA-box.ConclusionsOur results reveal that distinct functional promoter classes and overlapping promoter codes are present in protochordates like in vertebrates, but show extraordinary lineage-specific innovations. Furthermore, we uncover a genome-wide, developmental stage-specific shift in the mode of TSS selection. Our results provide a rich resource for the study of promoter structure and evolution in Metazoa.

Highlights

  • Development is largely driven by transitions between transcriptional programs

  • When DNA is methylated within gene bodies, it is instead associated with active transcription and splicing [5, 6], a feature that is conserved between animals and plants

  • We normalized these counts to tags per million reads and clustered neighbouring Transcription start site (TSS) to generate tag clusters (TCs), which revealed the set of promoter regions that are active within each stage

Read more

Summary

Introduction

Development is largely driven by transitions between transcriptional programs. The initiation of transcription at appropriate sites in the genome is a key component of this and yet few rules governing selection are known. The majority of DNA methylation in the genome of the urochordate, ascidian, Ciona intestinalis [9, 10] is gene body DNA methylation and is found only at a subset of genes, where it is positively correlated with gene expression level [9, 10]. How this subset is selected for methylation, and whether core promoter elements play a role in this, has so far remained unknown

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call