Abstract
BackgroundEndothelial cell recovery requires replenishment of primary cells from the endothelial lineage. However, recent evidence suggests that cells of the innate immune system enhance endothelial regeneration. Methods and resultsFocusing on mature CD11b+-monocytes, we analyzed the fate and the effect of transfused CD11b+-monocytes after endothelial injury in vivo. CD11b-diphtheria-toxin-receptor-mice – a mouse model in which administration of diphtheria toxin selectively eliminates endogenous monocytes and macrophages – were treated with WT-derived CD11b+-monocytes from age-matched mice. CD11b+-monocytes improved endothelium-dependent vasoreactivity after 7days while transfusion of WT-derived CD11b−-cells had no beneficial effect on endothelial function. In ApoE−/−-CD11b-DTR-mice with a hypercholesterolemia-induced chronic endothelial injury transfusion of WT-derived CD11b+-monocytes stimulated by interferon-γ (IFNγ) decreased endothelial function, whereas interleukin-4-stimulated (IL4) monocytes had no detectable effect on vascular function. Bioluminescent imaging revealed restriction of transfused CD11b+-monocytes to the endothelial injury site in CD11b-DTR-mice depleted of endogenous monocytes. In vitro co-culture experiments revealed significantly enhanced regeneration properties of human endothelial outgrowth cells (EOCs) when cultured with preconditioned-media (PCM) or monocytes of IL4-stimulated-subsets compared to the effects of IFNγ-stimulated monocytes. ConclusionCD11b+-monocytes play an important role in endothelial cell recovery after endothelial injury by homing to the site of vascular injury, enhancing reendothelialization and improving endothelial function. In vitro experiments suggest that IL4-stimulated monocytes enhance EOC regeneration properties most likely by paracrine induction of proliferation and cellular promotion of differentiation. These results underline novel insights in the biology of endothelial regeneration and provide additional information for the treatment of vascular dysfunction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.