Abstract

Selectivity control on the reaction of alkene with hydrosilane is a challenging task in the development of non-precious-metal-based hydrosilylation catalysts. While the traditional way of selectivity control relies on the use of different ligand type and/or different metals, we report herein that cobalt(I) complexes bearing different N-heterocyclic carbene ligands (NHCs) exhibit distinct selectivity in catalyzing the reaction of alkene with Ph2SiH2. [(IAd)(PPh3)CoCl] (IAd = 1,3-diadamantylimidazol-2-ylidene) is an efficient catalyst for anti-Markovnikov hydrosilylation of monosubstituted alkenes. [(IMes)2CoCl] (IMes = 1,3-dimesitylimidazol-2-ylidene) shows Markovnikov-addition selectivity in promoting the hydrosilylation of aryl-substituted alkenes. [(IMe2Me2)4Co][BPh4] (IMe2Me2 = 1,3-dimethyl-4,5-dimethylimidazol-2-ylidene) can catalyze hydrogenation of alkenes with Ph2SiH2 as the terminal hydrogen source. Mechanistic studies in combination with the knowledge on the steric nature of cobalt–NHC species su...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.