Abstract

Xyloglucan plays an important structural role in primary cell walls, possibly tethering adjacent microfibrils and restraining cell expansion. There is therefore considerable interest in understanding the role of xyloglucan endotransglucosylase/hydrolases (XTHs), which are encoded in Arabidopsis by a 33-member gene family. We compared the key catalytic properties of two very different Arabidopsis XTHs (heterologously produced in Pichia), both of which are aluminium-repressed. Reductively tritiated oligosaccharides of xyloglucan were used as model acceptor substrates. Untransformed Pichia produced no xyloglucan-acting enzymes; therefore purification of the XTHs was unnecessary. XTH15, a classical group-I/II XTH, had high XET and undetectable XEH activity in vitro; its XET Km values were 31μM XXXGol (acceptor substrate) and 2.9mg/ml xyloglucan (donor substrate). In contrast, XTH31, a group-III-A XTH, showed predominant XEH activity and only slight XET activity in vitro; its XET Km was 86μM XXXGol (acceptor), indicating a low affinity of this predominantly hydrolytic protein for a transglycosylation acceptor substrate. The Km of XTH31’s XEH activity was 1.6mg/ml xyloglucan. For both proteins, the preferred XET acceptor substrate, among five cellotetraitol-based oligosaccharides tested, was XXXGol. XTH31’s XET activity was strongly compromised when the second Xyl residue was galactosylated. XTH15’s XET activity, in contrast, tolerated substitution at the second Xyl residue. The two enzymes also showed different pH preferences, XTH31 exhibiting an unusually low pH optimum and XTH15 an unusually broad optimum. XTH31’s hydrolase activity increased almost linearly with decreasing pH in the apoplastic range, 6.2–4.5, consistent with a possible role in ‘acid growth’. In conclusion, these two Al3+-repressed XTHs differ, in several important enzymic features, from other members of the Arabidopsis XTH family.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.