Abstract

BackgroundThe more selective second-generation BTK inhibitors (BTKi) Acalabrutinib and Zanubrutinib and the first-generation BTKi Ibrutinib are highlighted by their clinical effectiveness in mantle cell lymphoma (MCL), however, similarities and differences of their biological and molecular effects on anti-survival of MCL cells induced by these BTKi with distinct binding selectivity against BTK remain largely unknown.MethodsAlamarBlue assays were performed to define cytotoxicity of BTKi against MCL cells, Jeko-1 and Mino. Cleaved PARP and caspase-3 levels were examined by immunoblot analysis to study BTKi-induced apoptotic effects. Biological effects of BTKi on MCL-cell chemotaxis and lipid droplet (LD) accumulation were examined in Jeko-1, Mino and primary MCL cells via Transwell and Stimulated Raman scattering imaging analysis respectively. Enzyme-linked immunoassays were used to determine CCL3 and CCL4 levels in MCL-cell culture supernatants. RNA-seq analyses identified BTKi targets which were validated by quantitative RT-PCR (qRT-PCR) and immunoblot analysis.ResultsAcalabrutinib and Zanubrutinib induced moderate apoptosis in Ibrutinib high-sensitive JeKo-1 cells and Ibrutinib low-sensitive Mino cells, which was accompanied by cleaved PARP and caspase-3. Such effects might be caused by the stronger ability of Ibrutinib to upregulate the expression of pro-apoptotic genes, such as HRK, GADD45A, and ATM, in JeKo-1 cells than in Mino cells, and the expression of such apoptotic genes was slightly changed by Acalabrutinib and Zanubrutinib in both JeKo-1 and Mino cells. Further, Acalabrutinib, Zanubrutinib and Ibrutinib reduced MCL-cell chemotaxis with similar efficiency, due to their similar abilities to downmodulate chemokines, such as CCL3 and CCL4. Also, these three BTKi similarly suppressed MCL-cell LD accumulation via downregulating lipogenic factors, DGAT2, SCD, ENPP2 and ACACA without significant differences.ConclusionBTKi demonstrated differential capacities to induce MCL-cell apoptosis due to their distinct capabilities to regulate the expression of apoptosis-related genes, and similar biological and molecular inhibitory effects on MCL-cell chemotaxis and LD accumulation.

Highlights

  • The more selective second-generation Bruton tyrosine kinase (BTK) inhibitors (BTKi) Acalabrutinib and Zanubrutinib and the first-generation BTK inhibitors (BTKi) Ibrutinib are highlighted by their clinical effectiveness in mantle cell lymphoma (MCL), similarities and differences of their biological and molecular effects on anti-survival of MCL cells induced by these BTKi with distinct binding selectivity against BTK remain largely unknown

  • BTKi induced differential cytotoxicity against MCL cell lines We firstly aimed to compare the cytotoxic effectiveness of Ibrutinib, Acalabrutinib and Zanubrutinib observed in MCL

  • RNA-seq identified apoptosis-related targets of BTKi To understand the comprehensive mechanisms involved in MCL-cell apoptosis, we analyzed differentially expressed genes (DEGs) in Jeko-1 and Mino cells treated with Ibrutinib, Acalabrutinib or Zanubrutinib, versus untreated cells, via whole-transcriptome RNA sequencing (RNA-seq)

Read more

Summary

Introduction

The more selective second-generation BTK inhibitors (BTKi) Acalabrutinib and Zanubrutinib and the first-generation BTKi Ibrutinib are highlighted by their clinical effectiveness in mantle cell lymphoma (MCL), similarities and differences of their biological and molecular effects on anti-survival of MCL cells induced by these BTKi with distinct binding selectivity against BTK remain largely unknown. Ibrutinib could potently induce apoptosis via inhibiting BCR signaling activated canonical NF-κB signaling in MCL [4], or altering the expression of anti-apoptotic gene, MCL-1 [5]. The production of chemokines, CCL3 and CCL4, is increased upon BCR activation in MCL [6], chronic lymphocytic leukemia (CLL) [7] and diffuse large B cell lymphoma (DLBCL) [8], and such effects can be impaired by Ibrutinib treatment, which significantly decreases chemokine receptor CXCR4 expression in MCL [6] and CLL [9]. It has been reported that BCR signaling activation could increase the level of lipoprotein lipase (LPL), a protein essential for fatty acid metabolism providing cells with energy and survival advantage, which can be impaired by Ibrutinib treatment via reducing LPL level in CLL [11]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call