Abstract

Angiogenesis is essential for tumor growth. Vascular endothelial growth factor (VEGF), a crucial factor in tumor angiogenesis, has been reported to be transcriptionally regulated by hypoxia-inducible factor-1 (HIF-1). An 8-oxo-G or apurinic/apyrimidinic (AP) site, which is frequently associated with DNA damage, has been identified in the promoter region of VEGF. However, the detailed molecular mechanisms by which AP sites regulate VEGF gene transcription are largely unknown. The dual functional protein apurinic/apyrimidinic endonuclease 1 (APE1) is both the key enzyme in DNA base excision repair and the redox factor shown to regulate HIF-1 DNA-binding activity. In the present study, we tested the involvement of both the AP endonuclease and redox activity of APE1 in regulating HIF-1 DNA binding and VEGF transcription in HUVECs. By employing two APE1 activity-specific inhibitors and AP-site-containing reporter constructs, we confirmed that both activities of APE1 were involved in regulating VEGF expression under hypoxic conditions. Furthermore, we found that the interaction between APE1 and its downstream repair enzyme, DNA polymerase β, was compromised when the N-terminal structure of APE1 was distorted under oxidative conditions. Our data suggest that the DNA repair and redox activity of APE1 can play a collaborative role in regulating the transcriptional initiation of the AP-site-containing promoter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.