Abstract
Signaling pathways engaged by angiogenic factors bFGF and VEGF in tumor angiogenesis are not fully understood. The current study identifies cytoplasmic tyrosine kinase c-Abl as a key factor differentially mediating bFGF- and VEGF-induced angiogenesis in microvascular endothelial cells. STI571, a c-Abl kinase inhibitor, only inhibited bFGF- but not VEGF-induced angiogenesis. bFGF induced membrane receptor cooperation between integrin beta(3) and FGF receptor, and triggered a downstream cascade including FAK, c-Abl, and MAPK. This signaling pathway is different from one utilized by VEGF that includes integrin beta(5), VEGF receptor-2, Src, FAK, and MAPK. Ectopic expression of wild-type c-Abl sensitized angiogenic response to bFGF, but kinase dead mutant c-Abl abolished this activity. Furthermore, the wild-type c-Abl enhanced angiogenesis in both Matrigel implantation and tumor xenograft models. These data provide novel insights into c-Abl's differential functions in mediating bFGF- and VEGF-induced angiogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.