Abstract

This study was designed to test a hypothesis that the functional activity of big-conductance, Ca(2+)-activated K(+) (BK) channels is different in cerebral and pulmonary artery smooth muscle cells (CASMCs and PASMCs). Using patch-clamp recordings, we found that the activity of whole cell and single BK channels were significantly higher in CASMCs than in PASMCs. The voltage and Ca(2+) sensitivity of BK channels were greater in CASMCs than in PASMCs. Targeted gene knockout of β(1)-subunits significantly reduced BK currents in CASMCs but had no effect in PASMCs. Western blotting experiments revealed that BK channel α-subunit protein expression level was comparable in CASMCs and PASMCs; however, β(1)-subunit protein expression level was higher in CASMCs than in PASMCs. Inhibition of BK channels by the specific blocker iberiotoxin enhanced norepinephrine-induced increase in intracellular calcium concentration in CASMCs but not in PASMCs. Systemic artery blood pressure was elevated in β(1)(-/-) mice. In contrast, pulmonary artery blood pressure was normal in β(1)(-/-) mice. These findings provide the first evidence that the activity of BK channels is higher in cerebral than in PASMCs. This heterogeneity is primarily determined by the differential β(1)-subunit function and contributes to diverse cellular responses in these two distinct types of cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.