Abstract

Abstract Thanks to recurrent observations of the black hole binary Cyg X-1 carried out over 15 years the INTEGRAL satellite has collected the largest data set in the hard X-ray band for this source. We have analyzed these data, complemented by data collected by other X-ray satellites and radio flux at 15 GHz. To characterize the spectral and variability properties of the system we have examined parameters such as the hard X-ray flux, photon index, and fractional variability. Our main result is that the 2D distribution of the photon index and flux determined for the 22–100 keV band forms six clusters. This result, interpreted within the Comptonization scenario as the dominant process responsible for the hard X-ray emission, leads to a conclusion that the hot plasma in Cyg X-1 takes the form of six specific geometries. The distinct character of each of these plasma states is reinforced by their different X-ray and radio variability patterns. In particular, the hardest and softest plasma states show no short-term flux–photon index correlation typical for the four other states, implying a lack of interaction between the plasma and accretion disk. The system evolves between these two extreme states, with the spectral slope regulated by a variable cooling of the plasma by the disk photons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call