Abstract

As part of our efforts in the chemistry of main group platforms that support anion sensing and transport, we are now reporting the synthesis of anitmony-based bidentate Lewis acids featuring the o-C6F4 backbone. These compounds can be easily accessed by reaction of the newly synthesized o-C6F4(SbPh2)2 (5) with o-chloranil or octafluorophenanthra-9,10-quinone, affording the corresponding distiboranes 6 and 7 of general formula o-C6F4(SbPh2(diolate))2 with diolate = tetrachlorocatecholate for 6 and octafluorophenanthrene-9,10-diolate for 7, respectively. While 6 is very poorly soluble, its octafluorophenanthrene-9,10-diolate analog 7 readily dissolves in CH2Cl2 and undergoes swift conversion into the corresponding fluoride chelate complex [7-μ2-F]- which has been isolated as a [nBu4N]+ salt. The o-C6H4 analog of 7, referred to as 8, has also been prepared. Although less Lewis acidic than 7, 8 also forms a very stable fluoride chelate complex ([8-μ2-F]-). Altogether, our experiental results, coupled with computational analyses and fluoride anion affinity calculations, show that 7 and 8 are some of the strongest antimony-based fluoride anion chelators prepared to date. Another notable aspect of this work concerns the use of the octafluorophenanthrene-9,10-diolate ligand and its ablity to impart advantageous solubility and Lewis acidity properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.