Abstract

Classic canine studies suggest that central great vein distension evokes an autonomic reflex tachycardia (Bainbridge reflex). It is unclear whether central venous distension in humans is a necessary and sufficient stimulus to evoke a reflex increase in heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA). Prior work from our laboratory suggests that limb venous distension evokes a reflex increase in BP and MSNA in humans. We hypothesized that in humans, compared with the limb venous distension, inferior vena cava (IVC) distension would evoke a less prominent increase in HR and MSNA. IVC distension (monitored with ultrasonography) was induced by two methods: 1) head-down tilt (HDT, N = 13); and 2) lower-body positive pressure (LBPP, N = 10). Two minutes of HDT induced IVC distension (Δ2.6 ± 0.2 mm, P < 0.001, ~27% in cross-sectional area), slightly increased mean BP (Δ2.3 ± 0.7 mmHg, P = 0.005), decreased MSNA (Δ5.2 ± 0.8 bursts/min, P < 0.001, N = 10), and did not alter HR (P = 0.37). LBPP induced similar IVC distension, increased BP (Δ2.0 ± 0.7 mmHg, P < 0.01), and did not alter HR (P = 0.34). Thus central venous distension leads to a rapid increase in BP and a subsequent fall in MSNA. Central venous distension does not evoke either bradycardia or tachycardia in humans. The absence of a baroreflex-mediated bradycardia suggests that the Bainbridge reflex is engaged. Clearly, this reflex differs from the powerful sympathoexcitation peripheral venous distension reflex described in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call