Abstract
Distant supervised relation extraction is an efficient method to find novel relational facts from very large corpora without expensive manual annotation. However, distant supervision will inevitably lead to wrong label problem, and these noisy labels will substantially hurt the performance of relation extraction. Existing methods usually use multi-instance learning and selective attention to reduce the influence of noise. However, they usually cannot fully utilize the supervision information and eliminate the effect of noise. In this paper, we propose a method called Neural Instance Selector (NIS) to solve these problems. Our approach contains three modules, a sentence encoder to encode input texts into hidden vector representations, an NIS module to filter the less informative sentences via multilayer perceptrons and logistic classification, and a selective attention module to select the important sentences. Experimental results show that our method can effectively filter noisy data and achieve better performance than several baseline methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.