Abstract

(Abridged) Distant galaxy clusters provide important tests of the growth of large scale structure in addition to highlighting the process of galaxy evolution in a consistently defined environment at large look back time. We present a sample of 22 distant (z>0.8) galaxy clusters and cluster candidates selected from the 9 deg2 footprint of the overlapping X-ray Multi Mirror (XMM) Large Scale Structure (LSS), CFHTLS Wide and Spitzer SWIRE surveys. Clusters are selected as extended X-ray sources with an accompanying overdensity of galaxies displaying optical to mid-infrared photometry consistent with z>0.8. Nine clusters have confirmed spectroscopic redshifts in the interval 0.8<z<1.2, four of which are presented here for the first time. A further 11 candidate clusters have between 8 and 10 band photometric redshifts in the interval 0.8<z<2.2, while the remaining two candidates do not have information in sufficient wavebands to generate a reliable photometric redshift. All of the candidate clusters reported in this paper are presented for the first time. Those confirmed and candidate clusters with available near infrared photometry display evidence for a red sequence galaxy population, determined either individually or via a stacking analysis, whose colour is consistent with the expectation of an old, coeval stellar population observed at the cluster redshift. We further note that the sample displays a large range of red fraction values indicating that the clusters may be at different stages of red sequence assembly. We compare the observed X-ray emission to the flux expected from a suite of model clusters and find that the sample displays an effective mass limit M200 ~ 1e14 Msolar with all clusters displaying masses consistent with M200 < 5e14 Msolar. This XMM distant cluster study represents a complete sample of X-ray selected z>0.8 clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.