Abstract

AbstractIn this paper we study a random graph with N nodes, where node j has degree Dj and {Dj} are i.i.d. with ℙ(Dj ≤ x) = F(x). We assume that 1 − F(x) ≤ cx−τ+1 for some τ > 3 and some constant c > 0. This graph model is a variant of the so‐called configuration model, and includes heavy tail degrees with finite variance. The minimal number of edges between two arbitrary connected nodes, also known as the graph distance or the hopcount, is investigated when N → ∞. We prove that the graph distance grows like logν N, when the base of the logarithm equals ν = 𝔼[Dj(Dj − 1)]/𝔼[Dj] > 1. This confirms the heuristic argument of Newman, Strogatz, and Watts [Phys Rev E 64 (2002), 026118, 1–17]. In addition, the random fluctuations around this asymptotic mean logν N are characterized and shown to be uniformly bounded. In particular, we show convergence in distribution of the centered graph distance along exponentially growing subsequences. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 2005

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.