Abstract

Consider a random polynomial $Q_n$ of degree $n+1$ whose zeroes are i.i.d. random variables $\xi _0,\xi _1,\ldots ,\xi _n$ in the complex plane. We study the pairing between the zeroes of $Q_n$ and its critical points, i.e. the zeroes of its derivative $Q_n'$. In the asymptotic regime when $n\to \infty $, with high probability there is a critical point of $Q_n$ which is very close to $\xi _0$. We localize the position of this critical point by proving that the difference between $\xi _0$ and the critical point has approximately complex Gaussian distribution with mean $1/(nf(\xi _0))$ and variance of order $\log n \cdot n^{-3}$. Here, $f(z)= \mathbb E [\frac 1 {z-\xi _k}]$ is the Cauchy–Stieltjes transform of the $\xi _k$’s. We also state some conjectures on critical points of polynomials with dependent zeroes, for example the Weyl polynomials and characteristic polynomials of random matrices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call