Abstract

We consider distance-based similarity measures for real-valued vectors of interest in kernel-based machine learning algorithms. In particular, a truncated Euclidean similarity measure and a self-normalized similarity measure related to the Canberra distance. It is proved that they are positive semi-definite (p.s.d.), thus facilitating their use in kernel-based methods, like the Support Vector Machine, a very popular machine learning tool. These kernels may be better suited than standard kernels (like the RBF) in certain situations, that are described in the paper. Some rather general results concerning positivity properties are presented in detail as well as some interesting ways of proving the p.s.d. property.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.