Abstract

In many database applications, one of the common queries is to find approximate matches to a given query item from a collection of data items. For example, given an image database, one may want to retrieve all images that are similar to a given query image. Distance based index structures are proposed for applications where the data domain is high dimensional, or the distance function used to compute distances between data objects is non-Euclidean. In this paper, we introduce a distance based index structure called multi-vantage point (mvp) tree for similarity queries on high-dimensional metric spaces. The mvp-tree uses more than one vantage point to partition the space into spherical cuts at each level. It also utilizes the pre-computed (at construction time) distances between the data points and the vantage points. We have done experiments to compare mvp-trees with vp-trees which have a similar partitioning strategy, but use only one vantage point at each level, and do not make use of the pre-computed distances. Empirical studies show that mvp-tree outperforms the vp-tree 20% to 80% for varying query ranges and different distance distributions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call