Abstract

AbstractAlgebraic multigrid (AMG) is one of the most efficient and scalable parallel algorithms for solving sparse linear systems on unstructured grids. However, for large 3D problems, the coarse grids that are normally used in AMG often lead to growing complexity in terms of memory use and execution time per AMG V‐cycle. Sparser coarse grids, such as those obtained by the parallel modified independent set (PMIS) coarsening algorithm, remedy this complexity growth but lead to nonscalable AMG convergence factors when traditional distance‐one interpolation methods are used. In this paper, we study the scalability of AMG methods that combine PMIS coarse grids with long‐distance interpolation methods. AMG performance and scalability are compared for previously introduced interpolation methods as well as new variants of them for a variety of relevant test problems on parallel computers. It is shown that the increased interpolation accuracy largely restores the scalability of AMG convergence factors for PMIS‐coarsened grids, and in combination with complexity reducing methods, such as interpolation truncation, one obtains a class of parallel AMG methods that enjoy excellent scalability properties on large parallel computers. Copyright © 2007 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call