Abstract

A distance transform converts a binary image consisting of foreground (feature) and background (nonfeature) elements into a gray level image, where each element contains the distance from the corresponding element to the nearest foreground element. The calculation of exact Euclidean distance transform is a computationally intensive task and, therefore, approximations are often utilized. These algorithms are typically iterative or require several passes to complete the transform. In this paper, a novel parallel single-pass algorithm for the calculation of constrained distance transform is presented. The algorithm can be implemented by utilizing only bit-wise logical operations; thus, it is well suited for low-cost bit-serial SIMD architectures or conventional uniprocessors with a large word width, where the SIMD operation is emulated. Implementations on a parallel SIMD architecture and a sequential architecture are described. Comparisons are provided, showing results of the implementations of the presented algorithm, a sequential local algorithm utilizing integer approximated distances and an algorithm utilizing exact Euclidean distances.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.