Abstract

A fractional matching of a graph G is a function f assigning each edge a number in [ 0 , 1 ] so that ∑ e ∈ Γ ( v ) f ( e ) ≤ 1 for each v ∈ V ( G ) , where Γ ( v ) is the set of edges incident to v. The fractional matching number is the maximum of ∑ e ∈ Γ ( v ) f ( e ) over all fractional matchings. Motivated by progress in the study of relations between eigenvalues and matchings of graphs, in this paper, we characterize graphs with the minimum distance spectral radius among all t-connected graphs with n vertices and fractional matching number at most n − k 2 for 1 ≤ k ≤ n − 2 . Our characterization generalizes a result of Li, Miao, and Zhang [On the size, spectral radius, distance spectral radius and fractional matchings in graphs. Bull Aust Math Soc. 2023;187–199.], giving a distance spectral condition for the existence of a fractional perfect matching in a connected graph.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.