Abstract
In this paper, we establish a sufficient condition on distance signless Laplacian spectral radius for a bipartite graph to be Hamiltonian. We also give two sufficient conditions on distance signless Laplacian spectral radius for a graph to be Hamilton-connected and traceable from every vertex, respectively. Furthermore, we obtain a sufficient condition for a graph to be Hamiltonian in terms of the distance signless Laplacian spectral radius of the complement of a graph G.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.