Abstract

We consider the Assouad dimension analogues of two important problems in geometric measure theory. These problems are tied together by the common theme of ‘passing to weak tangents’. First, we solve the analogue of Falconer’s distance set problem for Assouad dimension in the plane: if a planar set has Assouad dimension greater than 1, then its distance set has Assouad dimension 1. We also obtain partial results in higher dimensions. Second, we consider how Assouad dimension behaves under orthogonal projection. We extend the planar projection theorem of Fraser and Orponen to higher dimensions, provide estimates on the (Hausdorff) dimension of the exceptional set of projections, and provide a recipe for obtaining results about restricted families of projections. We provide several illustrative examples throughout.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.