Abstract

We prove that the out-distance sequence {f+(k)} of a vertex-transitive digraph of finite or infinite degree satisfies f+(k+1)≤f+(k)2 for k≥1, where f+(k) denotes the number of vertices at directed distance k from a given vertex. As a corollary, we prove that for a connected vertex-transitive undirected graph of infinite degree d, we have f(k)=d for all k, 1≤k<diam(G). This answers a question by L. Babai.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.