Abstract

A Bloom filter is a widely used data-structure for representing a set S and answering queries of the form Is x in S?. By allowing some false positive answers (saying 'yes' when the answer is in fact 'no') Bloom filters use space significantly below what is required for storing S. In the distance sensitive setting we work with a set S of (Hamming) vectors and seek a data structure that offers a similar trade-off, but answers queries of the form Is x close to an element of S? (in Hamming distance). Previous work on distance sensitive Bloom filters have accepted false positive and false negative answers. Absence of false negatives is of critical importance in many applications of Bloom filters, so it is natural to ask if this can be also achieved in the distance sensitive setting. Our main contributions are upper and lower bounds (that are tight in several cases) for space usage in the distance sensitive setting where false negatives are not allowed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.