Abstract

A connected graph is said to be a completely regular clique graph with parameters (s, c), \(s, c \in {\mathbb {N}}\), if there is a collection \(\mathcal {C}\) of completely regular cliques of size \(s+1\) such that every edge is contained in exactly c members of \(\mathcal {C}\). It is known that many families of distance-regular graphs are completely regular clique graphs. In this paper, we determine completely regular clique graph structures, i.e., the choices of \(\mathcal {C}\), of all known families of distance-regular graphs with unbounded diameter. In particular, we show that all distance-regular graphs in this category are completely regular clique graphs except the Doob graphs, the twisted Grassmann graphs and the Hermitean forms graphs. We also determine parameters (s, c); however, in a few cases we determine only s and give a bound on the value c. Our result is a generalization of a series of works by J. Hemmeter and others who determined distance-regular graphs in this category that are bipartite halves of bipartite distance-regular graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.