Abstract

We have developed a rigorous computational technique to compute exact analytic expressions for a number of distance-based topological indices of chemical graphs. There are two main advantages of our technique over existing techniques of similar nature: first, our technique is significantly diverse as it also covers the Wiener index and eccentricity-based topological indices besides Szeged-like indices, and secondly we have considerably reduced the algorithmic and computational complexity in comparison to previous techniques. Our proposed technique generates certain vertex and edge partitions of a graph which are essential in computing the exact analytical formulas of distance-based and eccentricity-based indices. To ensure the applicability of our technique, we have computed various distance-based and eccentricity-based topological indices for certain infinite families of polyomino chain system. Moreover, we find analytical exact expressions of certain degree-based topological indices for these polyomino chains. These topological indices can be obtained as a by-product of our technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.