Abstract
The locus of points that determine a constant product of their distances to the sides of a triangle is a cubic curve in the projectively closed Euclidean triangle plane. In this paper, algebraic and geometric properties of these distance product cubics shall be studied. These cubics span a pencil of cubics that contains only one rational and non-degenerate cubic curve which is known as the Bataille acnodal cubic determined by the product of the actual trilinear coordinates of the centroid of the base triangle. Each triangle center defines a distance product cubic. It turns out that only a small number of triangle centers share their distance product cubic with other centers. All distance product cubics share the real points of inflection which lie on the line at infinity. The cubics' dual curves, their Hessians, and especially those distance product cubics that are defined by particular triangle centers shall be studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.