Abstract
Recent years, a large amount of ontology learning algorithms have been applied in different disciplines and engineering. The ontology model is presented as a graph and the key of ontology algorithms is similarity measuring between concepts. In the learning frameworks, the information of each ontology vertex is expressed as a vector, thus the similarity measuring can be determined via the distance of the corresponding vector. In this paper, we study how to get an optimal distance function in the ontology setting. The tricks we presented are divided into two parts: first, the ontology distance learning technology in the setting that the ontology data have no labels; then, the distance learning approaches in the setting that the given ontology data are carrying real numbers as their labels. The result data of the four simulation experiments reveal that our new ontology trick has high efficiency and accuracy in ontology similarity measure and ontology mapping in special engineering applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.