Abstract

This paper focuses on a generalization of stochastic Kronecker graphs, introducing a Kronecker-like operator and defining a family of generator matrices H dependent on distances between nodes in a specified graph embedding. We prove that any lattice-based network model with sufficiently small distance-dependent connection probability will have a Poisson degree distribution and provide a general framework to prove searchability for such a network. Using this framework, we focus on a specific example of an expanding hypercube and discuss the similarities and differences of such a model with recently proposed network models based on a hidden metric space. We also prove that a greedy forwarding algorithm can find very short paths of length O((log log n) <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ) on the hypercube with <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n</i> nodes, demonstrating that distance-dependent Kronecker graphs can generate searchable network models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.