Abstract

Latent feature models are widely used to decompose data into a small number of components. Bayesian nonparametric variants of these models, which use the Indian buffet process (IBP) as a prior over latent features, allow the number of features to be determined from the data. We present a generalization of the IBP, the distance dependent Indian buffet process (dd-IBP), for modeling non-exchangeable data. It relies on distances defined between data points, biasing nearby data to share more features. The choice of distance measure allows for many kinds of dependencies, including temporal and spatial. Further, the original IBP is a special case of the dd-IBP. We develop the dd-IBP and theoretically characterize its feature-sharing properties. We derive a Markov chain Monte Carlo sampler for a linear Gaussian model with a dd-IBP prior and study its performance on real-world non-exchangeable data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.