Abstract
We present a method that improves the spectral resolution and extends the distance range for detection of ordered solvent molecules surrounding a paramagnetic ion in frozen solutions using 1H electronânuclear double-resonance (ENDOR) spectroscopy. This method is based on the R-3 distance dependence of the protonâelectron spin hyperfine interaction and its effect on the electronânuclear cross relaxation rate. This relaxation effect dramatically influences the ENDOR phase spectrum and appears through the radio-frequency (rf) phase angle dependence (using the conventional rf modulation detection scheme), and thus it is termed distance-dependent enhanced ENDOR phase (DEEP) spectroscopy. Applying DEEP spectroscopy to the conventional CW-ENDOR experiment, one is able to eliminate the large proton matrix peak from disordered solvent molecules. We observe a 4-fold increase in spectral resolution with DEEP spectroscopy for distant protons. When applied to solvation of aquo Mn(II) ions, we resolve 1H hyperfine coup...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.