Abstract

Tractography is widely used in human studies of connectivity with respect to every brain region, function, and is explored developmentally, in adulthood, ageing, and in disease. However, the core issue of how to systematically threshold, taking into account the inherent differences in connectivity values for different track lengths, and to do this in a comparable way across studies has not been solved. By utilising 54 healthy individuals' diffusion-weighted image data taken from HCP, this study adopted Monte Carlo derived distance-dependent distributions (DDDs) to generate distance-dependent thresholds with various levels of alpha for connections of varying lengths. As a test case, we applied the DDD approach to generate a language connectome. The resulting connectome showed both short- and long-distance structural connectivity in the close and distant regions as expected for the dorsal and ventral language pathways, consistent with the literature. The finding demonstrates that the DDD approach is feasible to generate data-driven DDDs for common thresholding and can be used for both individual and group thresholding. Critically, it offers a standard method that can be applied to various probabilistic tracking datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.