Abstract

Driven by the emerging network applications, querying and mining uncertain graphs has become increasingly important. In this paper, we investigate a fundamental problem concerning uncertain graphs, which we call the distance-constraint reachability (DCR) problem: Given two vertices s and t, what is the probability that the distance from s to t is less than or equal to a user-defined threshold d in the uncertain graph? Since this problem is #P-Complete, we focus on efficiently and accurately approximating DCR online. Our main results include two new estimators for the probabilistic reachability. One is a Horvitz-Thomson type estimator based on the unequal probabilistic sampling scheme, and the other is a novel recursive sampling estimator, which effectively combines a deterministic recursive computational procedure with a sampling process to boost the estimation accuracy. Both estimators can produce much smaller variance than the direct sampling estimator, which considers each trial to be either 1 or 0. We also present methods to make these estimators more computationally efficient. The comprehensive experiment evaluation on both real and synthetic datasets demonstrates the efficiency and accuracy of our new estimators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.