Abstract

Extraocular muscles are quite different from skeletal muscles in muscle fiber type and nerve supply; the small motor unit may be the most well known. As the first step to understanding the nerve-artery relationship, in this study we measured the distance from the arteriole (25-50μm in thickness) to the nerve terminal twigs in extraocular muscles. With the aid of immunohistochemistry for nerves and arteries, we examined the arteriole-nerve distance at 10-15 sites in each of 68 extraocular muscles obtained from ten elderly cadavers. The oblique sections were nearly tangential to the muscle plate and included both global and orbital aspects of the muscle. In all muscles, the nerve twigs usually took a course parallel to muscle fibers, in contrast to most arterioles that crossed muscles. Possibly due to polyinnervation, an intramuscular nerve plexus was evident in four rectus and two oblique muscles. The arteriole-nerve distance usually ranged from 300 to 400μm. However, individual differences were more than two times greater in each of seven muscles. Moreover, in each muscle the difference between sites sometimes reached 1mm or more. The distance was generally shorter in the rectus and oblique muscles than in the levator palpebrae muscle, which reached statistical significance (p<0.05). The differences in arteriole-nerve distances between sites within each muscle, between muscles, and between individuals might lead to an individual biological rhythm of fatigue in oculomotor performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.