Abstract
A distance-based outlier detection method that finds the top outliers in an unlabeled data set and provides a subset of it, called outlier detection solving set, that can be used to predict the outlierness of new unseen objects, is proposed. The solving set includes a sufficient number of points that permits the detection of the top outliers by considering only a subset of all the pairwise distances from the data set. The properties of the solving set are investigated, and algorithms for computing it, with subquadratic time requirements, are proposed. Experiments on synthetic and real data sets to evaluate the effectiveness of the approach are presented. A scaling analysis of the solving set size is performed, and the false positive rate, that is, the fraction of new objects misclassified as outliers using the solving set instead of the overall data set, is shown to be negligible. Finally, to investigate the accuracy in separating outliers from inliers, ROC analysis of the method is accomplished. Results obtained show that using the solving set instead of the data set guarantees a comparable quality of the prediction, but at a lower computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.