Abstract

In multi-robot systems, the capability of each robot to relatively localize its neighbors is a crucial requirement, which needs to be resolved as a prerequisite for almost any distributed scheme of operation. Notably, this problem proves to be quite challenging in GPS-denied environments. In this letter, we investigate a problem of simultaneous relative localization and leader-following control of aerial robots by using only ranging and odometry sensors, waiving the need of external positioning systems. To tackle this challenge, we propose a cooperative estimation-control scheme where specialized agents called orbiters are tasked with maintaining persistently exciting trajectories to facilitate exponential convergence of both relative localization and tracking errors for itself and others. Numerical simulations and experiments on quadcopters in a GPS-denied environment are carried out to validate the theoretical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.