Abstract
In this article we present new algorithms for rasterizing implicit curves, i.e., curves represented as level sets of functions of two variables. Considering the pixels as square regions of the plane, a “correct” algorithm should paint those pixels whose centers lie at less than half the desired line width from the curve. A straightforward implementation, scanning the display array evaluating the Euclidean distance from the center of each pixel to the curve, is impractical, and a standard quad-tree-like recursive subdivision scheme is used instead. Then we attack the problem of testing whether or not the Euclidean distance from a point to an implicit curve is less than a given threshold. For the most general case, when the implicit function is only required to have continuous first-order derivatives, we show how to reformulate the test as an unconstrained global root-finding problem in a circular domain. For implicit functions with continuous derivatives up to orderkwe introduce an approximate distance of orderk. The approximate distance of orderkfrom a point to an implicit curve is asymptotically equivalent to the Euclidean distance and provides a sufficient test for a polynomial of degreeknot to have roots inside a circle. This is the main contribution of the article. By replacing the Euclidean distance test with one of these approximate distance tests, we obtain a practical rendering algorithm, proven to be correct for algebraic curves. To speed up the computation we also introduce heuristics, which used in conjunction with low-order approximate distances almost always produce equivalent results. The behavior of the algorithms is analyzed, both near regular and singular points, and several possible extensions and applications are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.