Abstract
Belief and plausibility functions based on evidence theory (ET) have been widely used in managing uncertainty. Various generalizations of ET to fuzzy sets (FSs) have been reported in the literature, but no generalization of ET to q-rung orthopair fuzzy sets (q-ROFSs) has been made yet. Therefore, this paper proposes a novel, simple, and intuitive approach to distance and similarity measures for q-ROFSs based on belief and plausibility functions within the framework of ET. This research addresses a significant research gap by introducing a comprehensive framework for handling uncertainty in q-ROFSs using ET. Furthermore, it acknowledges the limitations inherent in the current state of research, notably the absence of generalizations of ET to q-ROFSs and the challenges in extending belief and plausibility measures to certain aggregation operators and other generalizations including Hesitant fuzzy sets, Bipolar fuzzy sets, Fuzzy soft sets etc. Our contribution lies in the proposal of a novel approach to distance and similarity measures for q-ROFSs under ET, utilizing Orthopairian belief and plausibility intervals (OBPIs). We establish new similarity measures within the generalized ET framework and demonstrate the reasonability of our method through useful numerical examples. Additionally, we construct Orthopairian belief and plausibility GRA (OBP-GRA) for managing daily life complex issues, particularly in multicriteria decision-making scenarios. Numerical simulations and results confirm the usability and practical applicability of our proposed method in the framework of ET.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.