Abstract

The prevalence of diabetes mellitus is increasing worldwide, causing health and economic implications. One of the principal microvascular complications of type 2 diabetes is Distal Symmetric Polyneuropathy (DSPN), affecting 42.6% of the population in Mexico. Therefore, the purpose of this study was to find out the predictors of this complication. The dataset contained a total number of 140 subjects, including clinical and paraclinical features. A multivariate analysis was constructed using Boruta as a feature selection method and Random Forest as a classification algorithm applying the strategy of K-Folds Cross Validation and Leave One Out Cross Validation. Then, the models were evaluated through a statistical analysis based on sensitivity, specificity, area under the curve (AUC) and receiving operating characteristic (ROC) curve. The results present significant values obtained by the model with this approach, presenting 67% of AUC with only three features as predictors. It is possible to conclude that this proposed methodology can classify patients with DSPN, obtaining a preliminary computer-aided diagnosis tool for the clinical area in helping to identify the diagnosis of DSPN.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.