Abstract

Objective. The purpose of this study is to describe the three-dimensional morphometry of the brachialis muscle at its distal attachment to the ulna. Methods. Fifty cadaveric elbows were dissected and the brachialis distal insertion was isolated on the ulna bone and probed with a three-dimensional digitizer, to create a three-dimensional model of the footprint. Measurements and analysis of each footprint shape were recorded and compared based on gender and size. Results. There was significant gender difference in the surface length (P= 0.002) and projected length (P= 0.001) of the brachialis footprint. The shapes of the footprint also differed among the specimens. Conclusion. The shape of the brachialis muscle insertion differed among all the specimens without significant variation in gender or sides. There was also a significant difference in muscle length between males and females with little difference in the width and surface area. Significance. The information obtained from this study is important for kinematic understanding and surgical procedures around the elbow joint as well as the understanding of the natural age related anatomy of the brachialis footprint morphology.

Highlights

  • The brachialis muscle is the major elbow flexor

  • The brachialis tendon inserts distally to the coronoid process at the tuberosity of the ulna. This distal attachment has been described by previous studies as fibers of the brachialis muscle converging to a thick, broad tendon which is attached to the tuberosity of the ulna and to a rough impression on the anterior aspect of the coronoid process [1,2,3]

  • This study provides information on the qualitative and quantitative morphometry of the distal brachialis muscle insertion on the ulna

Read more

Summary

Introduction

The brachialis tendon inserts distally to the coronoid process at the tuberosity of the ulna This distal attachment has been described by previous studies as fibers of the brachialis muscle converging to a thick, broad tendon which is attached to the tuberosity of the ulna and to a rough impression on the anterior aspect of the coronoid process [1,2,3]. It is innervated by branches of the musculocutaneous and radial nerves [4, 5]. According to Cage et al [8], the brachialis muscle is injured during type III coronoid fractures that involve disruption of more than 50% of the height of the coronoid process, affecting the brachialis distal tendinous insertion at the more proximal aspect of the ulnar tuberosity

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call